xcov
xcov(x, y, [lags]; demean=true)
Compute the cross covariance function (CCF) between real-valued vectors or matrices x and y, optionally specifying the lags. demean specifies whether the respective means of x and y should be subtracted from them before computing their CCF.
If both x and y are vectors, return a vector of the same length as lags. Otherwise, compute cross covariances between each pairs of columns in x and y.
Kwargs
demean: Specifies whether the respective means of x and y should be subtracted from them before computing their cross covariance.lags: When left unspecified andmaxlags=0, the lags used are the integers from-min(size(x,1)-1, 10*log10(size(x,1))) to min(size(x,1), 10*log10(size(x,1)))maxlags: limits the lag range from-maxlagtomaxlag.
xcov(x::AbstractVecOrMat{<:Real}; demean::Bool=true, lags::AbstractVector{<:Integer}=Int[], maxlags=0)
Compute the autocovariance of a vector or matrix x optionally specifying the lags at which to compute the autocovariance.
If x is a vector, return a vector of the same length as lags. If x is a matrix, return a matrix of size (length(lags), size(x,2)), where each column in the result corresponds to a column in x.
The output is not normalized. See xcorr for a function with normalization.
Methods
# 7 methods for generic function "xcov" from GMT:
[1] xcov(x::AbstractMatrix{<:Real}; demean, lags, maxlags)
[2] xcov(x::AbstractVector{<:Real}; demean, lags, maxlags)
[3] xcov(x::AbstractVecOrMat{<:Real}; demean, lags, maxlags)
[4] xcov(x::AbstractMatrix{<:Real}, y::AbstractMatrix{<:Real}; lags, demean, maxlags)
[5] xcov(x::AbstractVector{<:Real}, y::AbstractMatrix{<:Real}; lags, demean, maxlags)
[6] xcov(x::AbstractMatrix{<:Real}, y::AbstractVector{<:Real}; lags, demean, maxlags)
[7] xcov(x::AbstractVector{<:Real}, y::AbstractVector{<:Real}; demean, lags, maxlags)